lunes, 19 de octubre de 2009

Teoría General de Sistemas

Teoría General de los Sistemas


INTRODUCCION

La teoría de la organización y la práctica administrativa han experimentado cambios sustanciales en años recientes. La información proporcionada por las ciencias de la administración y la conducta ha enriquecido a la teoría tradicional. Estos esfuerzos de investigación y de conceptualización a veces han llevado a descubrimientos divergentes. Sin embargo, surgió un enfoque que puede servir como base para lograrla convergencia, el enfoque de sistemas, que facilita la unificación de muchos campos del conocimiento. Dicho enfoque ha sido usado por las ciencias físicas, biológicas y sociales, como marco de referencia para la integración de la teoría organizacional moderna.
El primer expositor de la Teoría General de los Sistemas fue Ludwig von Bertalanffy, en el intento de lograr una metodología integradora para el tratamiento de problemas científicos.
La meta de la Teoría General de los Sistemas no es buscar analogías entre las ciencias, sino tratar de evitar la superficialidad científica que ha estancado a las ciencias. Para ello emplea como instrumento, modelos utilizables y transferibles entre varios continentes científicos, toda vez que dicha extrapolación sea posible e integrable a las respectivas disciplinas.
La Teoría General de los Sistemas se basa en dos pilares básicos: aportes semánticos y aportes metodológicos, a los cuales me refiero en las próximas páginas.


APORTES SEMANTICOS

Las sucesivas especializaciones de las ciencias obligan a la creación de nuevas palabras, estas se acumulan durante sucesivas especializaciones, llegando a formar casi un verdadero lenguaje que sólo es manejado por los especialistas.
De esta forma surgen problemas al tratarse de proyectos interdisciplinarios, ya que los participantes del proyecto son especialistas de diferentes ramas de la ciencia y cada uno de ellos maneja una semántica diferente a los demás.
La Teoría de los Sistemas, para solucionar estos inconvenientes, pretende introducir una semántica científica de utilización universal.

Sistema:

Es un conjunto organizado de cosas o partes interactuantes e interdependientes, que se relacionan formando un todo unitario y complejo.
Cabe aclarar que las cosas o partes que componen al sistema, no se refieren al campo físico (objetos), sino más bien al funcional. De este modo las cosas o partes pasan a ser funciones básicas realizadas por el sistema. Podemos enumerarlas en: entradas, procesos y salidas.


Entradas:

Las entradas son los ingresos del sistema que pueden ser recursos materiales, recursos humanos o información.
Las entradas constituyen la fuerza de arranque que suministra al sistema sus necesidades operativas.
Las entradas pueden ser:
- en serie: es el resultado o la salida de un sistema anterior con el cual el sistema en estudio está relacionado en forma directa.
- aleatoria: es decir, al azar, donde el término "azar" se utiliza en el sentido estadístico. Las entradas aleatorias representan entradas potenciales para un sistema.
- retroacción: es la reintroducción de una parte de las salidas del sistema en sí mismo.


Proceso:

El proceso es lo que transforma una entrada en salida, como tal puede ser una máquina, un individuo, una computadora, un producto químico, una tarea realizada por un miembro de la organización, etc.
En la transformación de entradas en salidas debemos saber siempre como se efectúa esa transformación. Con frecuencia el procesador puede ser diseñado por el administrador. En tal caso, este proceso se denomina "caja blanca". No obstante, en la mayor parte de las situaciones no se conoce en sus detalles el proceso mediante el cual las entradas se transforman en salidas, porque esta transformación es demasiado compleja. Diferentes combinaciones de entradas o su combinación en diferentes órdenes de secuencia pueden originar diferentes situaciones de salida. En tal caso la función de proceso se denomina una "caja negra".

Caja Negra:

La caja negra se utiliza para representar a los sistemas cuando no sabemos qué elementos o cosas componen al sistema o proceso, pero sabemos que a determinadas corresponden determinadas salidas y con ello poder inducir, presumiendo que a determinados estímulos, las variables funcionaran en cierto sentido.

Salidas:

Las salidas de los sistemas son los resultados que se obtienen de procesar las entradas. Al igual que las entradas estas pueden adoptar la forma de productos, servicios e información. Las mismas son el resultado del funcionamiento del sistema o, alternativamente, el propósito para el cual existe el sistema.
Las salidas de un sistema se convierten en entrada de otro, que la procesará para convertirla en otra salida, repitiéndose este ciclo indefinidamente.

Relaciones:

Las relaciones son los enlaces que vinculan entre sí a los objetos o subsistemas que componen a un sistema complejo.

Podemos clasificarlas en:

- Simbióticas: es aquella en que los sistemas conectados no pueden seguir funcionando solos. A su vez puede subdividirse en unipolar o parasitaria, que es cuando un sistema (parásito) no puede vivir sin el otro sistema (planta); y bipolar o mutual, que es cuando ambos sistemas dependen entre sí.
- Sinérgica: es una relación que no es necesaria para el funcionamiento pero que resulta útil, ya que su desempeño mejora sustancialmente al desempeño del sistema. Sinergia significa "acción combinada". Sin embargo, para la teoría de los sistemas el término significa algo más que el esfuerzo cooperativo. En las relaciones sinérgicas la acción cooperativa de subsistemas semi-independientes, tomados en forma conjunta, origina un producto total mayor que la suma de sus productos tomados de una manera independiente.
- Superflua: Son las que repiten otras relaciones. La razón de las relaciones superfluas es la confiabilidad. Las relaciones superfluas aumentan la probabilidad de que un sistema funcione todo el tiempo y no una parte del mismo. Estas relaciones tienen un problema que es su costo, que se suma al costo del sistema que sin ellas puede funcionar.


Atributos:

Los atributos de los sistemas, definen al sistema tal como lo conocemos u observamos. Los atributos pueden ser definidores o concomitantes: los atributos definidores son aquellos sin los cuales una entidad no sería designada o definida tal como se lo hace; los atributos concomitantes en cambio son aquellos que cuya presencia o ausencia no establece ninguna diferencia con respecto al uso del término que describe la unidad.

Contexto:

Un sistema siempre estará relacionado con el contexto que lo rodea, o sea, el conjunto de objetos exteriores al sistema, pero que influyen decididamente a éste, y a su vez el sistema influye, aunque en una menor proporción, influye sobre el contexto; se trata de una relación mutua de contexto-sistema.
Tanto en la Teoría de los Sistemas como en el método científico, existe un concepto que es común a ambos: el foco de atención, el elemento que se aísla para estudiar.
El contexto a analizar depende fundamentalmente del foco de atención que se fije. Ese foco de atención, en términos de sistemas, se llama límite de interés.
Para determinar este límite se considerarían dos etapas por separado:
a) La determinación del contexto de interés.
b) La determinación del alcance del límite de interés entre el contexto y el sistema.
a) Se suele representar como un círculo que encierra al sistema, y que deja afuera del límite de interés a la parte del contexto que no interesa al analista.
d) En lo que hace a las relaciones entre el contexto y los sistemas y viceversa. Es posible que sólo interesen algunas de estas relaciones, con lo que habrá un límite de interés relacional.
Determinar el límite de interés es fundamental para marcar el foco de análisis, puesto que sólo será considerado lo que quede dentro de ese límite.
Entre el sistema y el contexto, determinado con un límite de interés, existen infinitas relaciones. Generalmente no se toman todas, sino aquellas que interesan al análisis, o aquellas que probabilísticamente presentan las mejores características de predicción científica.

Rango:

En el universo existen distintas estructuras de sistemas y es factible ejercitar en ellas un proceso de definición de rango relativo. Esto produciría una jerarquización de las distintas estructuras en función de su grado de complejidad.
Cada rango o jerarquía marca con claridad una dimensión que actúa como un indicador claro de las diferencias que existen entre los subsistemas respectivos.
Esta concepción denota que un sistema de nivel 1 es diferente de otro de nivel 8 y que, en consecuencia, no pueden aplicarse los mismos modelos, ni métodos análogos a riesgo de cometer evidentes falacias metodológicas y científicas.
Para aplicar el concepto de rango, el foco de atención debe utilizarse en forma alternativa: se considera el contexto y a su nivel de rango o se considera al sistema y su nivel de rango.
Refiriéndonos a los rangos hay que establecer los distintos subsistemas. Cada sistema puede ser fraccionado en partes sobre la base de un elemento común o en función de un método lógico de detección.
El concepto de rango indica la jerarquía de los respectivos subsistemas entre sí y su nivel de relación con el sistema mayor.

Subsistemas:

En la misma definición de sistema, se hace referencia a los subsistemas que lo componen, cuando se indica que el mismo está formado por partes o cosas que forman el todo.
Estos conjuntos o partes pueden ser a su vez sistemas (en este caso serían subsistemas del sistema de definición), ya que conforman un todo en sí mismos y estos serían de un rango inferior al del sistema que componen.
Estos subsistemas forman o componen un sistema de un rango mayor, el cual para los primeros se denomina macrosistema.



Variables:

Cada sistema y subsistema contiene un proceso interno que se desarrolla sobre la base de la acción, interacción y reacción de distintos elementos que deben necesariamente conocerse.
Dado que dicho proceso es dinámico, suele denominarse como variable, a cada elemento que compone o existe dentro de los sistemas y subsistemas.
Pero no todo es tan fácil como parece a simple vista ya que no todas las variables tienen el mismo comportamiento sino que, por lo contrario, según el proceso y las características del mismo, asumen comportamientos diferentes dentro del mismo proceso de acuerdo al momento y las circunstancias que las rodean.

Parámetro:

Uno de los comportamientos que puede tener una variable es el de parámetro, que es cuando una variable no tiene cambios ante alguna circunstancia específica, no quiere decir que la variable es estática ni mucho menos, ya que sólo permanece inactiva o estática frente a una situación determinada.

Operadores:

Otro comportamiento es el de operador, que son las variables que activan a las demás y logran influir decisivamente en el proceso para que este se ponga en marcha. Se puede decir que estas variables actúan como líderes de las restantes y por consiguiente son privilegiadas respecto a las demás variables. Cabe aquí una aclaración: las restantes variables no solamente son influidas por los operadores, sino que también son influenciadas por el resto de las variables y estas tienen también influencia sobre los operadores.

Retroalimentación:

La retroalimentación se produce cuando las salidas del sistema o la influencia de las salidas del sistema en el contexto, vuelven a ingresar al sistema como recursos o información.
La retroalimentación permite el control de un sistema y que el mismo tome medidas de corrección en base a la información retroalimentada.

LAS ORGANIZACIONES COMO SISTEMAS

Una organización es un sistema socio-técnico incluido en otro más amplio que es la sociedad con la que interactúa influyéndose mutuamente.
También puede ser definida como un sistema social, integrado por individuos y grupos de trabajo que responden a una determinada estructura y dentro de un contexto al que controla parcialmente, desarrollan actividades aplicando recursos en pos de ciertos valores comunes.

Subsistemas que forman la Empresa:

a) Subsistema psicosocial: está compuesto por individuos y grupos en interacción. Dicho subsistema está formado por la conducta individual y la motivación, las relaciones del status y del papel, dinámica de grupos y los sistemas de influencia.
b) Subsistema técnico: se refiere a los conocimientos necesarios para el desarrollo de tareas, incluyendo las técnicas usadas para la transformación de insumos en productos.
c) Subsistema administrativo: relaciona a la organización con su medio y establece los objetivos, desarrolla planes de integración, estrategia y operación, mediante el diseño de la estructura y el establecimiento de los procesos de control.

No hay comentarios:

Publicar un comentario